The search functionality is under construction.

Author Search Result

[Author] Kazuyuki SAITO(26hit)

21-26hit(26hit)

  • Magnetic Field Homogeneity of Birdcage Coil for 4T MRI System with No Lumped Circuit Elements

    Ryotaro SUGA  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:4
      Page(s):
    791-797

    In recent years, magnetic resonance imaging (MRI) systems that operate up to under 3T are being used in clinical practice in Japan. In order to achieve the requirements of higher image quality and shorter imaging times, devices that utilize high magnetic fields (> 3T) and high power electromagnetic (EM) wave pulses have been developed. The rise of the static magnetic field is proportional to the increase of the EM wave frequency which raises the issue of variation in capacitance used in the radio frequency (RF) coil for MRI system. In addition, increasing power causes problems of withstanding voltage and these approaches leads to generation of non-uniform magnetic field inside the RF coil. Therefore, we proposed a birdcage coil without the use of lumped circuit elements for MRI systems in previous study. However, it is difficult to fabricate this birdcage coil. Hence, simply-structured birdcage coil with no lumped circuit elements is desired. In this paper, we propose a simply-structured birdcage coil with no lumped circuit elements for a 4T MRI system. In addition, the authors investigated the input impedance and magnetic field distribution of the proposed coil by FDTD calculations and measurements. The results confirm that the proposed birdcage coil matches the performance of the conventional birdcage coil which includes several capacitors.

  • Biological Tissue-Equivalent Agar-Based Solid Phantoms and SAR Estimation Using the Thermographic Method in the Range of 3-6 GHz

    Teruo ONISHI  Ryo ISHIDO  Takuya TAKIMOTO  Kazuyuki SAITO  Shinji UEBAYASHI  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E88-B No:9
      Page(s):
    3733-3741

    In this paper, the electrical constants of a biological tissue-equivalent agar-based solid phantom from 3.0 to 6.0 GHz are described. The developed phantom can reproduce the electrical constants of biological tissues from 3.0 to 6.0 GHz, and it is not necessary to change the phantom for each frequency band in the range of 3.0 to 6.0 GHz during the measurements. Moreover, adjustments to the dielectric constants of the phantom at 3.0, 3.8, 5.2, and 5.8 GHz are presented. The constants of this phantom can be adjusted mainly by using polyethylene powder and sodium chloride. The phantom can be used to evaluate the Specific Absorption Rate (SAR) as well as the antenna characteristics in the range of 3.0 to 6.0 GHz. Furthermore, the effect of the electrical constants of the phantom on the SAR is investigated. The investigation of SAR measurements is performed on the phantom at 5.2 GHz using the thermographic method. Calculations using the FD-TD method and the finite difference method based on the heat conduction equation are carried out in order to evaluate the thermal diffusion in the measurements using the thermographic method. The measured and calculated results are in good agreement. There is evidence that the thermal diffusion influences the SAR estimation at 5.2 GHz more than in a lower frequency range even though this method basically does not depend on the frequency.

  • Simple Switched-Beam Array Antenna System for Mobile Satellite Communications

    BASARI  M. Fauzan E. PURNOMO  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3861-3868

    This paper presents a simple antenna system for land vehicle communication aimed at Engineering Test Satellite-VIII (ETS-VIII) applications. The developed antenna system which designed for mounting in a vehicle is compact, light weight and offers simple satellite-tracking operation. This system uses a microstrip patch array antenna, which includes onboard-power divider and switching circuit for antenna feeding control, due to its low profile. A Global Positioning System (GPS) receiver is constructed to provide accurate information on the vehicle's position and bearing during traveling. The personal computer (PC) interfaces as the control unit and data acquisition, which were specifically designed for this application, allow the switching circuit control as well as the retrieving of the received power levels. In this research, the antenna system was firstly examined in an anechoic chamber for S parameter, axial ratio, and radiation characteristics. Satisfactory characteristics were obtained. As for beam-tracking of antenna, it was examined in the anechoic chamber with the gain above 5 dBic and the axial ratio below 3 dB. Moreover, good received power levels for tracking the ETS-VIII satellite in outdoor measurement, were confirmed.

  • Design of Miniature Implantable Tag Antenna for Radio-Frequency Identification System at 2.45GHz and Received Power Analysis

    HoYu LIN  Masaharu TAKAHASHI  Kazuyuki SAITO  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:1
      Page(s):
    129-136

    In recent years, there has been rapid developments in radio-frequency identification (RFID) systems, and their industrial applications include logistics management, automatic object identification, access and parking management, etc. Moreover, RFID systems have also been introduced for the management of medical instruments in medical applications to improve the quality of medical services. In recent years, the combination of such a system with a biological monitoring system through permanent implantation in the human body has been suggested to reduce malpractice events and ameliorate the patient suffering. This paper presents an implantable RFID tag antenna design that can match the conjugate impedance of most integrated circuit (IC) chips (9.3-j55.2Ω at 2.45GHz. The proposed antenna can be injected into the human body through a biological syringe, owing to its compact size of 9.3mm × 1.0mm × 1.0mm. The input impedance, transmission coefficient, and received power are simulated by a finite element method (FEM). A three-layered phantom is used to confirm antenna performance.

  • Simple Modeling of an Abdomen of Pregnant Women and Its Application to SAR Estimation

    Hiroki KAWAI  Koichi ITO  Masaharu TAKAHASHI  Kazuyuki SAITO  Takuya UEDA  Masayoshi SAITO  Hisao ITO  Hisao OSADA  Yoshio KOYANAGI  Koichi OGAWA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E89-B No:12
      Page(s):
    3401-3410

    This paper presents a simple abdomen model of pregnant women and the evaluation of the specific absorption rate (SAR) inside the proposed model close to normal mode helical antennas (NHAs), which are replacing the portable radio terminals for business at 150 MHz. First, dielectric properties of amniotic fluid and those of fetus of rabbit, which have about the same electrical properties as human, are measured. As a result, the conductivity of amniotic fluid is 1.8 times and that of fetus is 1.3 times higher than that of adult muscle at 150 MHz. The result also suggests the modeling of pregnant women including the amniotic fluid and the fetus is necessary. Next, a simple abdomen model of pregnant women based on the measurements of magnetic resonance (MR) images of Japanese women in the late period of pregnancy is proposed. Finally, the SAR inside the proposed abdomen model close to 0.11λ and 0.18λ NHAs is calculated using the finite-difference time-domain (FDTD) method. As a result, we have confirmed that the 10-g average SAR in the fetus is sufficiently less than 2 W/kg, when the output power of NHAs is 5 W, which is the maximum power of portable radio terminals in Japan.

  • Estimation of SAR Distribution of a Tip-Split Array Applicator for Microwave Coagulation Therapy Using the Finite Element Method

    Kazuyuki SAITO  Takeshi TANIGUCHI  Hiroyuki YOSHIMURA  Koichi ITO  

     
    PAPER-Applications of Electromagnetics Simulators

      Vol:
    E84-C No:7
      Page(s):
    948-954

    The microwave coagulation therapy has been used mainly for the treatment of hepatocellular carcinoma (small size tumor in the liver). In the treatment, a thin microwave antenna is inserted into the tumor, and the microwave energy heats up the tumor to produce the coagulated region including the cancer cells. At present, a problem occurs: the size of the coagulated region is insufficient, especially in the perpendicular direction of the antenna axis. In order to overcome this problem without increasing the physical load of the patient, the authors introduced a new type of array applicator composed of two coaxial-slot antennas. However, we cannot estimate heating characteristics of this array applicator precisely by using the FDTD calculation, because the use of staircasing approximation, which employs rectangular parallelepiped cells, is unsuitable for the analysis. Therefore, in this paper, we introduce the finite element method (FEM), which employs tetrahedral cells, to estimate the heating characteristics of the array applicator.

21-26hit(26hit)